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Abstract
We extend the ideas of finding sheared maps discussed in [10], and continue a matrix

decomposition called TRD decomposition which has an interesting geometric interpreta-
tion. Let M be a three times three invertible matrix with real entries. The matrix M can
be written as product of three matrices T , R and D, M = TRD, where D is a diago-
nalizable matrix with two equal eigenvalues, R is an orthogonal matrix and finally T is
a shear matrix. The product TRD is corresponding to a series of linear transformations
that send the unit sphere to the same ellipsoid that M does. The decomposition for a
general ellipsoid has been discussed in [6]. In this paper, the decomposition is applied on
a locus ellipsoid LE (Σ), resulted from a linear transformation LE that is applied on an
ellipsoid Σ, which is discussed in ([9]) and ([8]). Moreover, LE (Σ) can be represented by
a positive definite M . we adopt a different approach when decompose M into TRD. We
relate the given ellipsoid to an ellipsoid that is in its standard form through a transition
matrix. Next, we apply the SVD decomposition on a sheared ellipsoid to obtain the final
decomposition for the given locus ellipsoid LE (Σ).

1 Introduction

We continue a matrix decomposition called TRD decomposition which has an interesting geo-
metric interpretation. This matrix decomposition is introduced in a blog note by Danny Cale-
gari [3]. LetM be a three times three invertible matrix with real entries. The matrixM can be
written as product of three matrices T , R and D, M = TRD, where D is a diagonalizable ma-
trix with two equal eigenvalues, R is an orthogonal matrix and finally T is a shear matrix. The
product TRD is corresponding to a series of linear transformations that send the unit sphere to
the same ellipsoid that M does. The goal of this paper is to provide an algorithm to compute
this decomposition. The decomposition for a general ellipsoid has been discussed in [6]. In this
paper, we adopt a different approach, where we relate the given ellipsoid to an ellipsoid that is
in its standard form through a transition matrix. Next, we apply the SVD decomposition [11]
on a sheared ellipsoid to obtain the final decomposition for the given ellipsoid.
The decomposition is applied on a locus ellipsoid LE (Σ), resulted from a linear transforma-

tion LE that is applied on an ellipsoid Σ, which is discussed in ([?]) and ([8]). Moreover, LE (Σ)
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can be represented by a positive definite matrix M . In section 2, we review some background
information about such linear transformation. In section 3, we follow the ideas described in
([10]) to see how we obtain a sheared ellipsoids with circle cross sections when LE (Σ) is written
in its standard form and LE (Σ) respectively. In Section 4, we discuss how we decompose the
locus ellipsoid LE (Σ) into TRD.

2 Background information

A locus problem in 2D was stated in ([7]), the corresponding 3D versions were discussed in
([?]) and ([8]). When the fixed point A is placed at an infinity, our locus problem from ([9])
becomes the following:
A Locus problem: We are given a fixed point A = (ρ cosu0 sin v0, ρ sinu0 sin v0, ρ cos v0)

with ρ → ∞ and a generic point C on a surface Σ. We let the line l pass through A and C
and intersect a well-defined D on Σ, we want to determine the locus surface generated by the
point E, lying on CD and satisfying

−−→
ED = s

−−→
CD, (1)

where s is a real number parameter.
We briefly summarize the properties for the locus surface we have discussed in ([9]). The

locus surface determined by E in (1) can be written as Einf = sC+(1−s)Dinf . In [9] we assume
an ellipsoid Σ in R3 is given in either its standard form (2) or the parametric form in (3).

x2

a2
+
y2

b2
+
z2

c2
= 1, (2)

x(u, v) = a cosu sin v, y(u, v) = b sinu sin v, z(u, v) = c cos v. (3)

If s ∈ R+\{1/2}, we see the locus surface ∆∞(s, u0, v0) for an ellipsoid Σ is also an ellipsoid.
Moreover, there exists a matrix LD = [lij]3×3 such that LD C = Dinf . Consequently,

LE = sI + (1− s)LD (4)

is a linear transformation from R3 to R3 such that LE C = Einf , where C ∈ Σ, and therefore,
the locus surface ∆∞(s, u0, v0) is the image of Σ under the linear transformation given by the
matrix LE = [leij]3×3. We often use the notation LE (Σ) = ∆∞(s, u0, v0). More importantly,
the transformation LE is such that Σ is in the interior of ∆∞(s, u0, v0) when s > 1, and Σ is
tangent to ∆∞(s, u0, v0) at an elliptical curve, see [S1] for exploration. We refer to the Figure
1 that an ellipsoid Σ is shown in yellow, the locus ∆∞(s, u0, v0) is shown in blue for s = 2 and
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angles u0 = 1.0472 and v0 = 0.7854 are given for the fixed point A is given at an infinity.

Figure 1. Ellipsoid and its
locus

We consider the locus ellipsoid LE (Σ) satisfying XMX t = 1 withM being positive definite
and symmetric matrix. The minor and mean axis of XMX t = 1 span a plane π which intersects
the ellipsoid in the “smallest”possible ellipse. We rotate this plane by keeping the mean axis
fixed, and tilting the minor axis towards the major axis. At some unique point one obtains
a plane π′ that intersects the ellipsoid in a round circle. We want to find such shear map T,
which shears the ellipsoid XMX t = 1, by keeping this plane fixed, into another ellipsoid of
rotation, E1. After writing the locus ellipsoid LE (Σ) as a quadratic form of XMX t = 1 for
some matrix M with X = [x, y, z], we shall study how we can decompose the matrix M as
M = TRD, where T is a sheared map, D is a dilation and R is a rotation, see ([6]).
We first state how we can write ∆∞ = LE (Σ) in its implicit form by applying the principle

axes theorem. We recall from [9] that we applied LE on the Σ in its parametric form, therefore,
LE (Σ) will be expressed in its parametric form. We can transform LE (Σ) into its implicit form
by making use of the conversion matrix for LE as follows:

Q∆ =

((
[leij]3×3 0

0 1

)−t)
4×4


b2c2 0 0 0

0 c2a2 0 0
0 0 a2b2 0
0 0 0 −a2b2c2

( [leij]3×3 0
0 1

)−1

4×4

. (5)

1. We find the eigenvalues and eigenvectors of matrix Q∆, say λ1, λ2, λ3, λ4 for eigenvalues,

and w1, w2, w3, and


0
0
0
1

 for the eigenvectors.

2. If X∗ = [x, y, z, 1], then the implicit form of LE (Σ) or ∆∞, can be expressed as

X∗Q∆ (X∗)t = 0, (6)
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and Q∆ is symmetric and can be written as

Q∆ =


A B

2
C
2

0
B
2

D E
2

0
C
2

E
2

F 0
0 0 0 −a2b2c2

 , (7)

Subsequently, the implicit equation of ∆∞ can be written as

Ax2 +Bxy + Cxz +Dy2 + Eyz + Fz2 + J = 0, (8)

where the coeffi cients A through J can be found in [S2] or [S3].

3. If we consider the submatrix Q
′
∆ =

((
[leij]3×3

)−t) 1
a2 0 0
0 1

b2
0

0 0 1
c2

([leij]3×3

)−1
of the ma-

trix Q∆ (7), we remark that the matrix [leij]3×3 is positive definite since all eigenvalues are
positive for s > 1; therefore, the matrix Q

′
∆ is also positive definite, since it is a product of

three positive definite matrices, and thus Q
′
∆ is a positive definite and symmetric matrix.

In the rest of this paper, we often consider the sub-matrix the following matrix M, which
is derived from Q

′
∆

M =
1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 , (9)

and use
XMX t = 1 (10)

to represent the implicit equation for which is associated with LE (Σ) , where X = [x, y, z].

Equivalently, if we consider L−1
E (X), and let G =

 1
a2 0 0
0 1

b2
0

0 0 1
c2

 . Then the equation of

X
(
L−tE GL

−1
E

)
X t = 1 (11)

represents the implicit equation for ∆∞.We note the implicit forms of (8), (10) and (11) are all
identical. Furthermore, the eigenvalues of M are λ1, λ2, λ3 respectively.
We remark that when considering the standard form of ∆0, we may use the symmetric and

positive definite matrix M ((9) and consider

x̃2(√
1
λ1

)2 +
ỹ2(√

1
λ2

)2 +
z̃2(√

1
λ3

)2 = 1, (12)
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3 A sheared ellipsoid with circle cross section

In [5], it posts the question of ‘Find the radius of the largest circle on the ellipsoid Σ : x2

a2 + y2

b2
+

z2

c2
= 1 with semi-axes a > b > c. The existence of such circle can be found in [5]. In this section,

as we constructively find such cross section circle C for the ellipsoid locus LE (Σ) as described
in [10]. Furthermore, we will find the shear map T so that the cross section containing two
semi-axes of tilted ellipsoid of LE (Σ) is a circle C, which is also the intersection of the tilted
ellipsoid of LE (Σ) and LE (Σ). In general, since an ellipsoid can be thought as an image of
a linear transformation on the unit sphere. One may explore the TRD decomposition for a
matrix of an ellipsoid using the idea from [2]. Consequently, we can transform an ellipsoid E
back to the unit sphere using three steps, a shear map T , a rotation map R and a dilation D,
which is discussed in details in [6].

3.1 Finding a sheared map for an ellipsoid when a > b > c

We consider the ellipsoid Σ of the form x2

a2 + y2

b2
+ z2

c2
= 1, We refer to the following Figure 2.

We let OA1 = a,OA2 = b and OA3 = c be major, mean and minor axes for the ellipsoid Σ
respectively. We note that the plane π=OA2A3 in dark red of Figure 2 contains the median
and minor axes of Σ. Our objective is to rotate Σ into the ellipsoid Σ′, which contains an the
circle C lying on the plane π′ = OA2A

′
3 containing two equaled semi-axes (see the circle in

orange lying on the plane π′ = OA2A
′
3 in Figure 2).

Figure 2. Tilting Minor axis

In other words, we need to rotate the minor z−axis or OA3, toward the major x−axis or OA1,
until we obtain an the circle C lying on the plane containing two equaled axes (see the circle
in orange lying on the plane OA2A

′
3 in Figure 2). Therefore, the median y−axis is fixed, and

hence we apply a rotation matrix around y-axis, say

Ry =

 1 0 0
0 1 0
A 0 ±1

 . (13)
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We note that Ry

 x
y
z

 =

 x
y

Ax± z

 .Without loss of generality, we consider Ry

 x
y
z

 = x
y

Ax+ z

 , and the ellipsoid Σ : x2

a2 + y2

b2
+ z2

c2
= 1 becomes Σ′ : x2

a2 + y2

b2
+ (Ax+z)2

c2
= 1. These

two equations of Σ and Σ′ are reduced to (Ax+ z)2 − z2 = 0 or (Ax+ z + z) = 0, and the
plane equation

z = −Ax
2

(14)

is the intersecting plane equation where the circle lies.

1. Consider the cross section with y = 0, the original ellipsoid Σ becomes

x2

a2
+
z2

c2
= 1, (15)

and we substitute (14) into the equation yields,

x2 =
1

1
a2 + A2

4c2

=
1

4c2+a2A2

4a2c2

=
4a2c2

4c2 + a2A2
.

2. Use Eq. (15) again, we obtain

z2 = c2

(
1− 4a2c2

a2 (4c2 + a2A2)

)
(16)

3. Since we are rotating the minor (z) toward the major axis (x), and if P (x, y) denotes
the intersection point for the ellipses on the plane of y = 0, we want the distance P to
O = (0, 0, 0) to be equal for both ellipses. Therefore, it should be

x2 + z2 = b2, or (17)(
4a2c2

4c2 + a2A2

)
+ c2

(
1− 4a2c2

a2 (4c2 + a2A2)

)
= b2 (18)

4. Consequently, we get

A =
2
√

(b2 − c2) (a2 − b2)c

(b2 − c2) a
. (19)

Therefore, the plane z = −Ax
2

= −
(√

(b2−c2)(a2−b2)c

(b2−c2)a

)
x will intersect both Σ and Σ′ at a

circle. If we denote the intersecting circle by [x(t), y(t), z(t)], then we have

x(t) = t (20)

y(t) = ±
√

(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a

z(t) = −At
2
,
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where t ∈ [0, 2π] . In other words, the intersecting curve is the union of γ1(t)∪ γ2(t), with
γ1(t) = r1(t) ∪ r2(t) and γ2(t) = r3(t) ∪ r4(t), where t ∈ [0, 2π] , and

r1(t) =

(
t,

√
(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a
,−At

2

)
, (21)

r2(t) =

(
t,−

√
(b2 − c2) (a2b2 − a2c2 − a2t2 + t2c2)b

(b2 − c2) a
,−At

2

)
, (22)

r3(t) = −r1(t), (23)

r4(t) = −r2(t). (24)

Next, we want to find the furthermost point on Σ to the plane of z = −A
2
x. We do this

by applying Lagrange Multipliers. We remark that when an ellipsoid is written in the standard
form, the furthermost point can be found symbolically. However, if we are given an arbitrary
ellipsoid such as the locus ellipsoid LE (Σ), then we need to switch to numerical computations
using a CAS such as ([4]).

1. We let g(x, y, z) = x2

a2 + y2

b2
+ z2

c2
− 1 = 0 and f(x, y, z) = z + Ax

2
= 0.

2. We let L(x1, y1, z1, x2, z2, k1, k2) = (x1 − x2)2+y2
1+(z1 − z2)2+k1g (x1, y1, z1)+k2

(
z2 + A

2
x2

)
,

and set ∇L = 0 to solve x1, y1, z1, x2, z2, k1, and k2.

3. We select the nonzero solutions of k1 and k2, and make

vL = (x1, y1, z1) , (25)

which is the desired furthermost point on Σ. For simplicity, we use the vector −→vL =
−−→
OvL.

4. The unit normal vector for the z = −A
2
x is

−→n =

(
A
2
, 0, 1

)∥∥(A
2
, 0, 1

)∥∥ . (26)

5. The projection vector of −→vL along −→n is

−→vP = (‖−→vL‖ cos θ)−→n , (27)

where θ is the angle between −→vL and −→n , i.e. θ = cos−1

(−→vL · −→n
‖−→vL‖

)
. Finally, we see that

−→vm = (0, b, 0) and −→v⊥ = −→vP × −→vm spans the circle with the radius being equal to ‖−→vm‖ =
‖−→v⊥‖ = b, and the the direction and the length of the semi-major axis for the sheared
ellipsoid Σ′ is −→vP and ‖−→vP‖ respectively.

6. The matrix T for the sheared map of the standard form of the ellipsoid should map
the matrix V = [−→vm,−→v⊥,−→vL], which contains three vectors from the ellipsoid Σ, to a new
corresponding matrix W = [−→vm,−→v⊥,−→vP ] on the sheared ellipsoid Σ′. In other words, we
need TV = W and solve for T as follows:

T = WV −1. (28)
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7. If Σ is written in the standard form x2

a2 + y2

b2
+ z2

c2
= 1, and LE (Σ) is written in a general

form of XM∆∞X
t = 1, with M∆∞ = 1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 and X = [x, y, z]. Since M∆∞

is symmetric and positive-definite, it is diagonalizable, and we can find the transition
matrix P for M∆∞ such that

P−1M∆∞P = DM∆∞ , (29)

where DM∆∞ =

 λ1 0 0
0 λ2 0
0 0 λ3

 is the diagonal matrix, which consists of the eigenvalues

of M∆∞ , λ1 < λ2 < λ3.

8. Next, we recall that 1√
λi
, i = 1, 2, 3, corresponds to the length of each respective

semi-axis, and Mλ =


1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

 . We note that XMλX
t = 1 is the ellipsoid

∆0.

9. We recall that we can find the sheared ellipsoid Es,0 = T (Mλ) for Mλ.

3.2 Sheared map for a locus written in a general form

Now we consider the case when Σ is written in the standard form x2

a2 + y2

b2
+ z2

c2
= 1, and LE (Σ)

is written in a general form of XM∆∞X
t = 1, with M∆∞ = 1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 and X =

[x, y, z]. We describe how we can find the the sheared map for the ellipsoid of XM∆∞X
t = 1.

1. Since M∆∞ is symmetric and positive-definite, it is diagonalizable, and we find the tran-
sition matrix P for M∆∞ such that

P−1M∆∞P = DM∆∞ , (30)

where DM∆∞ =

 λ1 0 0
0 λ2 0
0 0 λ3

 is the diagonal matrix, which consists of the eigenvalues

of M∆∞ , λ1 < λ2 < λ3.

2. Next, we recall that 1√
λi
, i = 1, 2, 3, corresponds to the length of each respective

semi-axis, and Mλ =


1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

 . We note that XMλX
t = 1 is the ellipsoid

∆0. We recall from (28) that the matrix T for the ellipsoid, written in XMλX
t = 1, will

map V = [−→vm,−→v⊥,−→vL] to W = [−→vm,−→v⊥,−→vP ]. We obtain the sheared ellipsoid Es,0 = T (∆0)
for ∆0. In view of the nature of the construction of T and (18), the sheared ellipsoid will
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have the cross section being a circle. Since the transition matrix P is simply a rotation
matrix, the sheared ellipsoid of ∆∞ is P (T (∆0)) , and P (T (∆0)) shall have a cross
section being a circle too. In other words, the shear map T ′ : ∆∞ → T ′(∆∞) should
satisfy the following commutative diagram and we see T ′ = PTP−1 :

T ′

∆∞ −→ T ′(∆∞)

P−1 ↓ ↑ P
T

∆0 −→ T (∆0)

(31)

A dynamic geometry file using ([1]) can be found in [S1].

3.3 RDT decomposition for an ellipsoid in the standard form

We shall further decompose the matrixMλ.We now need a mapD that is just sending each axes
of the new ellipsoid to itself, but re-scaling them to be of length 1. It’s not a diagonal matrix
unless the last rotation happens now. In otherwise we need D[vm, v⊥, vP ] = [ vm

‖vm‖ ,
v⊥
‖v⊥‖ ,

vP
‖vP ‖ ].

We write DX = Xu, which implies that

D = XuX
−1. (32)

Finally, the rotation matrix R is to map a rotated unit sphere back to the one using standard
basis. In other words, if pi = DTMλ (ei) , i = 1, 2, 3 and we need R [p1 : p2 : p3] = I3. Therefore,
R = [p1 : p2 : p3]−1 .
We needRDTMλ (ei) = ei, where {ei} , i = 1, 2, 3, is the standard basis. We seeR (DTMλ) =

I3, which implies that

R = (DTMλ)
−1 ,

R−1 = DTMλ

T−1D−1R−1 = Mλ

M−1
λ = RDT (33)

Note that R is an orthogonal matrix, D is a dilation and T is a shear map.
Remark: When an ellipsoid is in a standard form, represented by a matrix Mλ,

it is possible to decompose M−1
λ = RDT. However, it remains to be proved or disproved

if this is possible when an ellipsoid is written in a general form. We explore a different way of
decomposing an ellipsoid written in a general form in the following section.

4 Decomposition for a locus written in a general form

We quote a Theorem and its proof from [6] for completeness as follow:

Theorem 1 Let M be the matrix corresponds to the locus ellipsoid ∆∞ = LE (Σ). Then there
are a shear matrix T , an orthogonal matrix R, and a diagonalizable matrix D with two equal
eigenvalues, such that M = TRD.
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Proof. Let M be given, and T1 be the shear map that transforms ∆∞ to the rotational
ellipsoid (an ellipsoid with two semi-axes of equal length) introduced before this theorem. Let
T1M = UP , where the matrix U is an orthogonal matrix and the matrix P is a positive definite
matrix. We recall that real symmetric matrices are orthogonally diagonalizable, therefore their
singular values are the same as their eigenvalues. Since the singular values of P and T1M are
the same, and the singular values of T1M are length of semi-axis of a rotational ellipsoid, P has
two equal eigenvalues. Therefore U and P satisfy the conditions for R and D in the theorem.
Finally, the matrix T1 is invertible and its inverse is also a shear map. Let T2 = T−1

1 , we have
M = T2UP where T2 satisfies the condition for T in the theorem. This finishes the proof.
We describe the procedure of the decomposition for the locus LE (Σ) below:

1. We are given a linear transformation LE on an ellipsoid Σ written in the standard
form. We first find the sheared map for the locus ellipsoid, LE (Σ) , which is written as

XM∆∞X
t = 1, where M∆∞ = 1

a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 is positive definite and symmetric.

2. We find the diagonal matrix DM∆∞ and transition matrix P such that

DM∆∞ = P−1M∆∞P. (34)

3. We proceed using the Lagrange method on the standard form, or XMλX
t = 1 below:

x2(√
1
λ1

)2 +
y2(√

1
λ2

)2 +
z2(√

1
λ3

)2 = 1 (35)

4. We find the matrix for the sheared map T for Mλ

5. We remark that if the ellipsoid XMλX
t = 1 is ∆0 =


√

1
λ1

cos(u) sin(v√
1
λ2

sinu sin v√
1
λ3

cos v

. Then T (∆0)

is the tilted ellipsoid of ∆0 with a circle cross section.

6. We find the dilation matrix D and the rotation matrix R of the decomposition for M−1
λ .

7. We find the sheared ellipsoid P (T (∆0)) in implicit form. We shall write the P (T (∆0)),
the tilted ellipsoid of ∆∞ with a circle cross section, so it is associated with a matrixM∗.
In other words, the implicit equation for the sheared ellipsoid P (T (∆0)) is

XM∗X t − 1 = 0, (36)

where X = (x, y, z).

(a) We recall that 1√
λi
, i = 1, 2, 3, corresponds to the length of each respective

semi-axis, and

Mλ =


1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

 . (37)
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(b) By making use of the conversion matrix from Eq. (11), we have

M∗ = (PT )−tM2
λ (PT )−1 . (38)

8. Next we find the SV D decomposition [11] of M∗ = USV t. We set U3 = UV t, P1 =
(V S)(V t). It is easy to check that

M∗ = U3P1. (39)

Finally, we set T1(M) = M∗ = U3P1 to find T1.

T1 = (M∗)M−1 (40)

M = T−1
1 U3P1 (41)

= TRD, (42)

where T = T−1
1 , R = U3 andD = P1, which are the needed matrices for the decomposition

M = TRD.

Example 2 We consider the parameters of a = 5, b = 4, c = 1, u0 = π
3
, v0 = π

4
, and s = 3 for

the linear transformation LE. Then find the sheared map for the ellipsoid of XMX t = 1, where

M = 1
a2b2c2

 A B
2

C
2

B
2

D E
2

C
2

E
2

F

 . (Complete computations can be found in [S2].)

1. M∆∞ =

 41891
1056875

− 24
√

3
42275

− 768
42275

− 24
√

3
42275

1619
27056

−48
√

3
1691

− 768
42275

−48
√

3
1691

155
1691

 ,

2. DM∆∞ =

 0.0175664583978446 0 0
0 0.0439013885141853 0
0 0 0.129669409149472

 .

3. P =

 0.492115662759820 −0.856262698599654 −0.156959757159834
0.664928628967863 0.486100824357473 −0.567076632295043
0.561864834700000 0.174700256800000] 0.808571411300000

 . We see

DM∆∞ = P−1M∆∞P. (43)

4. We proceed using the Lagrange method on the standard form, or XMλX
t = 1 below:

x2(√
1
λ1

)2 +
y2(√

1
λ2

)2 +
z2(√

1
λ3

)2 = 1 (44)

5. The plane equation that will intersect XMλX
t = 1 at a circle(√

(b2 − c2) (a2 − b2)c

(b2 − c2) a

)
x+ z = 0, or (45)

0.5541194455x+ z = 0. (46)
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6. The intersecting curve between XMλX
t = 1 and plane is γ1(t) ∪ γ2(t), with γ1(t) =

r1(t) ∪ r2(t) and γ2(t) = r3(t) ∪ r4(t), where t ∈ [0, 2π] and

r1(t) =
(
t, 1.138916142 · 10−9

√
−1.007646405 · 1018t2 + 1.756055540 · 1019,−0.5541194455t

)
,

r2(t) =
(
t,−1.138916142 · 10−9

√
−1.007646405 · 1018t2 + 1.756055540 · 1019,−0.5541194455t

)
,

r3(t) = −r1(t),

r4(t) = −r2(t).

7. The vector vm = (0, b, 0)t = (0, 4.772664123, 0)t. After solving the Lagrange equation, we
obtain

−→vL = (x1, y1, z1)t (47)

=

 6.284852576
0

1.536520588

 .

8. The unit normal vector for the plane is −→n = (0.484682749365491, 0, 0.874690020900000)t ,
and

−→vP = (‖−→vL‖ cos θ)−→n (48)

=

 2.12782456791426
0

3.84001064246040

 ,

where θ is the angle between −→vL and −→n . Furthermore, we have
−→v⊥ = −→vP ×−→vm (49)

=

 −4.17460168123777
0

2.31322796879084

 .

9. We depict the sheared ellipsoid (from Mλ) in blue, the intersecting curve γ1(t)∪ γ2(t) (in
red), and vectors, −→vP (in black), −→vm (in yellow), and −→v⊥ (in red) respectively in Figure 5
below:

Figure 5. Sheared ellipsoid,
intersecting curve and
respective axes.
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10. Now the matrix sheared matrix T for Mλ is

T =

 0.541053294104186 0 −0.828245082577262
0 1 0

0.254311294151032 0 1.45894670583444

 ,

11. We remark that if the ellipsoid XMλX
t = 1 is ∆0 =


√

1
λ1

cos(u) sin(v√
1
λ2

sinu sin v√
1
λ3

cos v

. Then T (∆0)

is the tilted ellipsoid of ∆0 with a circle cross section.

12. The dilation matrix D and the rotation matrix R of the decomposition forM−1
λ are shown

respectively as follows:

R =

 0.887695543746633 0 0.460430908603249
1.00000000022832

−0.460430909056691 0 0.887695544086518

 , (50)

D =

 0.213815385140839 0 0.00773985351316940
0 0.209526581800000 0

0.00773985351316943 0 0.223494424959161

 (51)

M−1
λ = RDT (52)

13. The sheared ellipsoid P (T (∆0)) in implicit form is shown below:

• f:=0.0439832008313126*x^2 - 0.000280825370498491*x*y + 0.00158336999892541*x*z
+ 0.0441423757466769*y^2 - 0.00271750319376373*y*z + 0.0515623995616397*z^2
- 1= 0.

14. We shall write the P (T (∆0)), the tilted ellipsoid of ∆∞ with a circle cross section, to
associate with a matrix M∗.

(a) We recall that 1√
λi
, i = 1, 2, 3, corresponds to the length of each respective

semi-axis, and

Mλ =


1√
λ1

0 0

0 1√
λ2

0

0 0 1√
λ3

 . (53)

(b) By making use of the conversion matrix from Eq. (11), we see

M∗ = (PT )−tM2
λ (PT )−1 , (54)

and find

M∗ =

 0.0439832008313126 −0.0001404126852 0.0007916849995
−0.0001404126852 0.044142375746676 −0.001358751597
0.0007916849995 −0.001358751597 0.0515623995616397

 (55)
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(c) The implicit equation for the sheared ellipsoid P (T (∆0)) is

XM∗X t − 1 = 0, (56)

where X = (x, y, z).

15. Next we find the SV D decomposition [11] of M∗ = USV t as follows

U =

 −0.101228839184970 0.677543238085540 0.728483275471596
0.173736836441032 0.733032053034318 −0.657631751733259
−0.979575537557327 0.0599930808414996 −0.191918202551034

 , (57)

S =

 0.0518851991267044 0 0
0 0.0439013885223523 0
0 0 0.0439013884905716

 , (58)

V =

 −0.101228839184970 0.677543238085540 0.728483275471596
0.173736836441031 0.733032053034318 −0.657631751733259
−0.979575537557327 0.0599930808414994 −0.191918202551034

 . (59)

M∗ = USV t. (60)

16. We let U3 = UV t, P1 = (V S)(V t). It is easy to check that M∗ = U3P1

17. Finally, we make T1(M) = M∗ = U3P1 to find T1.

T1 = (M∗)M−1 (61)

M = T−1
1 U3P1 (62)

= TRD, (63)

where T = T−1
1 , R = U3 andD = P1, which are the needed matrices for the decomposition

M = TRD.

18. We depict both the unit sphere S = (cosu sin v, sinu sin v, cos v) , u ∈ [0, 2π] and v ∈ [0, π]
in yellow, and the surface D (S) in green in Figure 6(a). We see the surfaces of RD (S)
(shown in light red) and D(S) (shwon in green) in Figure 6(b) are just a rotation of each
other. Finally, we depict the sheared ellipsoid RD(S) (shown in cyan) together with the
ellipsoid surface LE (Σ) (shown in blue) satisfying

XMX t − 1 = 0, (64)
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where X = (x, y, z).

Figure 6(a) Unit sphere S and D(S) Figure 6(b) RD(S) and D(S)

Figure 6(c) RD(S) and LE (Σ)

There is another TRD decomposition for M, using the approach from ([6]), that can be
found in [S3].

The Electronic Journal of Mathematics and Technology, Volume 18, Number 1, ISSN 1933-2823

26



5 Conclusion

Since an ellipsoid can be thought as the image of the unit sphere under a linear transformation.
After writing the image ellipsoid as a quadratic form of XMX t = 1 for some matrix M with
X = [x, y, z], we have seen how we can decompose the positive definite matrixM asM = TRD,
where T is a sheared map, D is a dilation and R is a rotation, see ([6]). In addition, we adopt a
different approach for the decomposition by involving a transition matrix, which consists of the
eigenvectors from the matrixM.We believe the geometric interpretation of TRD decomposition
by involving a transition matrix is accessible to undergraduate students who have backgrounds
in the Linear Algebra.
We recall that the locus problem was originated from a college entrance exam (see [7]).

With the help of technological tools, the problem was extended to more challenging forms
as seen in ([?]), ([8]), and ([9]). Consequently, the explorations lead us to deeper areas in
projective geometry, algebraic geometry and etc. We hope that when mathematics is made
more accessible to students, it is possible more students will be inspired to investigate more
challenging areas in mathematics. We do not expect that exam-oriented curricula will change
in the short term. However, encouraging a greater interest in mathematics for students, and
in particular providing them with the technological tools to solve challenging and intricate
problems beyond the reach of pencil-and-paper, is an important step for cultivating creativity
and innovation.
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7 Supplementary Electronic Materials

[S1] GeoGebra worksheet for finding the sheared maps of T (∆0) and P (T (∆0)) respectively.

[S2] Maple worksheet for Example 2.

[S3.1] An mla Maple file needs to be placed in a right directory before using file from [S3]. MLA
files can be created, modified, or read using the LibraryTools package commands or the
march command, see https://www.maplesoft.com/support/help/maple/view.aspx?path=Formats%2FMLA
for information.

[S3] Another Maple worksheet for Example 2 using the approroach from [6].
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